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Alex Zabrodsky received the Master of Science degree from the Technion - -  
Israel Institute of Technology at Haifa. Two publications appeared. 

In Covering spaces ofparacompact spaces he obtains the following result: 
~ f  

Suppose X--" X is a covering of a metrizable locally connected space X. Then 
there exist metrics fT for .~ and p for X which induce the topologies for .~ and X, 
and such that the inverse image under f of any unit ball in X is a disjoint union of 
unit balls in .~, each mapped isometrically by f. 

Following study in Israel, Alex went to Princeton, where he wrote his Ph.D. 
thesis under the supervision of Norman Steenrod and William Browder. This 
thesis, On the structure of the cohomology of H-spaces, was completed in 1967. 
An improved and generalized version appeared as Implications in the cohomo- 
logy of H-spaces [5]. 

As the titles of his doctoral work suggest, Zabrodsky's work at this period 
concerned torsion in the homology of H-spaces. The technical point of 
departure was a process called "infinite implications", which had been 
initiated by W. Browder. Following Browder, we say that an element x in 
a Hopf algebra H has 1-implication provided either that x p ÷ 0 or that 
there is an element x in the dual Hopf algebra H* such that (x, X) ÷ 0 and 
XP ~ 0. Here we assume that H is of finite type over a field of characteristic 
p. Now i f H  is the mod p cohomology of an H-space and x has dimension 2n, 
then x p = ~nx, and half the implication process is detected by a primary 
operation. Zabrodsky's contribution was to show how the other half of the 
implication process could be detected by a secondary cohomology operation. 
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He constructs certain two-stage Postnikov systems which are universal 
examples for p-th powers in homology. Before describing these examples, we 
briefly recount the theory of secondary cohomology operations and their 
universal examples. 

To fix ideas, consider a relation Zbiai = 0 in the mod p Steenrod algebra s¢ 
(or in M / B  (n) when unstable considerations are paramount, where B (n) is the 

left ideal annihilating n-dimensional cohomology classes). Associated with this 
data is a function 

: N ker a i  - "  H*/~)  im b~. 

A universal example for ~ is a space E and two classes u, e in the cohomology 
of E such that for any x ~ H * ( X )  in the domain of 

~ x )  = ( f * ( e )  ] f :  X ~ E such that f * (u )  = x }. 

A universal example (for classes in dimension n) for ~ is built as follows. Form 
the pull-back E, 

where 

E '-~Ko 

l 1 
K ( Z / p Z ,  n) ~' , Ko 

a : K(Z /pZ ,  n ) - .  1-I K ( Z / p Z ,  n3 "- Ko 
i 

is given, up to homotopy, by 

a*(ln,) = ail~, ni = n + degai,  

and ~Ko is the space of based paths in Ko. 
Consider a map 

fl : Ko ~ K ( Z / p Z ,  m), m = deg ai + deg bi 

given, up to homotopy, by 

fl*zm = bizn,. 

The relation ~,b,a~---0 mod B(n)  implies that the composition fl *a is null- 
homotopic. Any null-homotopy 

L : K ( Z / p Z ,  n ) - - , . ~ K ( Z / p Z ,  m)  

can be used to define a map 
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eL : E ~ DJg.(Z/pZ, m) 
by the formula 

eL(X,  W) = o W - -  L ( x ) .  

Then after identifying ~K(Z/pZ,  m) with K(Z/pZ, m - 1), we have 

e = ~ , t ( I m  _ l). 

To describe ¢, we let x he an n-dimensional class satisfying aix ffi O. Let 
f:  X-- ,K(Z/pZ,  n) satisfy f ' in = x, then ~ is given by 

~x )  = { ]*(e) l f : X--* E lifts f},  

and this set can be identified with a coset of the sum of the images of bi. 
Furthermore, the space E has a natural loop space structure. 

We can now describe Zabrodsky's theorem connecting implications with 
secondary operations. Consider any relation 

fl ~n = Zbi a, . 

Since f l ~  annihilates 2n-dimensional classes, we have a universal example 

E & K ( Z / p Z ,  2n) and a class 

e EH2~P(E; Z/pZ). 

Then Zabrodsky proves the following implication theorem, 

(e, 7~,, ) * 0  

where h, EH2~(E; Z/pZ)  satisfies ( t~, ~t,hn ) ~ 0. In other words, the image of 
the fundamental class in H*(E; Z/pZ)  has 1-implication. 

Thus both halves of the implication process are connected with the action of 
the Steenrod algebra. Now Browder's work had already provided strong 
restrictions on the behavior of the Bockstein operators. Zabrodsky's theorem 
paved the way toward strong restrictions on the action of the remaining 
Stcenrod operations. For example, from [12] we have the following result: 

Let X be a finite H-space. Then the module of  indecomposibles, Q~, is 
contained in the image of  ~ ~, provided n ~  l modp.  

In his own work, [5], [7]-[12], and the work ofR. Kane and J. Lin (who draw 
from Zabrodsky's work), these methods lead to a comprehensive understand- 
ing of the cohomology theory of finite H-spaces, and afortiori to an under- 
standing of the topology of Lie groups in homotopy theoretic terms. 
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In order to use the implication theorem, two main technical problems must 

be overcome. First, one usually does not have an H-map from X to the 

universal example E, so information about the H-deviation off 

Dt:X A X ~ E  

is needed. In particular, one seeks to relate the H-deviation of f to that off.  
Second, one usually does not have the action of primary operations in the form 
a~x -- 0, but only modulo decomposibles. The key ideas needed to overcome 
these problems appear first in [ 10]. In essence, a filtration of H*Xis introduced 
to accommodate the second problem. Sufficient information to handle the first 
problem can then be obtained using this filtration. A theorem in [10] asserts 
that for any finite H-space X, the module of even dimensional indecompo- 
sibles, {Q~" }, is generated over the Steenrod algebra by those in dimensions of 
the form 

f - I  

where p is an odd prime. 
In [7], Zabrodsky proves that i fx  p = py in the cohomology ring of a space 

with p-torsion free homology, then yP is also divisible by p. 
In the paper Cohomology operations and H-spaces [32], Zabrodsky returns 

to the subject to give an expository account. The theme of mutual interac- 
tion between the theories of cohomology operations and finite//-spaces is 
emphasized. 

The main problem addressed in [5] is the structure of the cohomology ring of 
a finite H-space admitting a homotopy associative multiplication. In his work 
on Lie groups, Borel discovered that the cohomology rings of certain Lie 
groups are not primitively generated. Browdcr supplied an explanation involv- 
ing both classifying spaces and infinite implications. Zabrodsky completed the 
picture by showing that Borers and Browdcr's results depended only on 
homotopy associativity and not the presence of a classifying space. A key 
ingredient of this work is a new formula connecting H-deviations with A- 
deviations. The A-deviation of an H-map f between two homotopy associative 
H-spaces measures the obstruction to homotopy associativity of the multi- 
plication on the homotopy theoretic fibre of f induced by a given homotopy 
forf. 

Consider a composition of H-maps between homotopy associative H- 

spaces  
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f g 
X , Y  , Z  

and suppose g of  is null-homotopic. Let E be the homotopy theoretic fibre of 
g, and f lift f via a specific null-homotopy. Then the H-deviation o f f  factors 
as a map 

w : X X X---, t2Z 

and Zabrodslcy's formula asserts that the A-deviation of g o f 

a: X X X X X-- , f2Z 

is given as a "boundary" of w, namely 

a(x, y, z) "-" w(x, y). w(xy, z). w(x, yz)-1, w(y, z)- i .  

This formula is combined with the 1-implication formula to give several 
results about torsion and homotopy associativity. Among them is the theorem 
that if X is homotopy associative, p an odd prime and H*(X; Z/pZ)  is 
primitively generated, then H*(X; Z/pZ)  is a free algebra. 

The discovery, in 1968, by P. Hilton and J. Roitberg, of H-spaces having 
the homotopy type of finite complexes, but not homotopy equivalent to any 
Lie group, S 7, RP 7 or their products, thrust/-/-spaces into prominence anew 
and uncovered new phenomena in homotopy theory. The work in his thesis 
put Zabrodsky in the center of activity in homotopy theory, but for many 
people (including this writer) the work by which Zabrodsky became first 
known appears in Homotopy associativity and finite C W  complexes [6]. 
Here he gives the first example of a finite H-space admitting a homotopy 
associative multiplication but not having the homotopy type of any loop 
space. The construction was achieved by a novel process, now known as 
"Zabrodsky mixing" which has become a standard part of localization in 
homotopy theory. For many of us, Alex literally burst on the scene with this 
work, which was powerful, immediately comprehensible, and moved the 
subject in a sudden leap. 

Most of the papers [13]-[33] are involved one way or another with the 
problem of classifying finite H-spaces. This problem remains open, but a 
substantial amount has been learned. 

In the three papers [9, 11, 15], Zabrodsky addresses the following question. 
Write the classical Lie groups as G(n, d) where d -- 1, 2, 4 and G(n, d) = 
SO(n), SU(n) and Sp(n) respectively. Consider the pull-back diagram 
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M(n,d, 2) h , G(n,d) 

f 

S~d_ l h, , s~d_ l 

where the degree of ha is 2 a n d f i s  a fibration. Then one asks, which M(n, d, 2) 
are H-spaces? Zabrodsky proves that if nd - 1 is odd and not equal to 3, 7, 
then M(n, d, A) is an H-space if and only i f2 is odd. Moreover, when 2 is odd, 
the map h covering ha is an H-map.  Ifnd - 1 is even, necessary conditions are 

given in [ 111. 
In [16], the classification of  the homotopy types among the M(n, d, 2) is 

completed for d = 2. 
In the pair of papers The classification of H-spaces with three cells, I, H 

Zabrodsky solved a vexing question concerning some of  the Hilton-Roitberg 
examples. These can be displayed as pull-backs 

Ek , Sp(2) 

1 
$7 k , $7 

where k denotes degree. Zabrodsky proves that when k----2(4), Ek is not an 
H-space, and consequently, one can classify the simply connected finite H- 
spaces of  rank < 2. The proof  of  this result represents another side of  
Zabrodsky's mathematics. I f  necessary, he was willing and able to complete 
brutal calculations. The result is of  significance for the wider classification 
problem, as this case is the first (dimension-wise) where the subtleties of  the 2- 
local homotopy type appear. 

In the papers [17, 24], Zabrodsky turned to the problem of classifying finite 

H-spaces after localizing at odd primes. In On rank 2 mod odd H-spaces, he 
introduces the first of his lifting theorems. He uses the new technique to prove 
that any H-space of rank 2 has the homotopy type of the total space of  a 
spherical fibration over a sphere, after localization at any odd prime p where 
the homology is p-torsion free. Furthermore, if a E l'Iq_ ~ S n has odd order and 
n, q are odd, there is at most one local H-space with characteristic element a .  

In the paper Torsion free rood p H-spaces of low rank the methodology of the 
lifting theorem is extended to construct all p-local H-spaces with torsion free 
homology and having rank < p - 1. 
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The first comprehensive exposition on the lifting theorem appears in the 
unpublished, but widely circulated paper, Power spaces, written while 
Alex was a member of the Institute for Advanced Studies in Princeton 73/74. 
This work was vital for the collaboration this writer enjoyed with Alex, 
under the auspices of the Binational Science Foundation of Israel and the 
United States. 

The lifting theorem was used in the construction of H-spaces with p-torsion 
in their homology. However, in the original work, this construction was 
achieved only after a tedious calculation. In the paper Alteration of H- 
structures a refinement in the technique of altering coproducts is introduced. 
Among the consequences is a short construction of H-spaces with torsion. In 
H-spaces and self-maps the following example is produced. For each prime 
p > 5, there is a p-local H-space W of rankp + 1 such that the modp 
cohomology of Wis an exterior algebra on p + 1 classes ~'ix, 0 < i < p, with 
d imx  --2p + 1. Furthermore, there is no map f :  W--}S 2p'+~ with degf----1 
modp. 

The papers Some relations in the mod 3 cohomology of H-spaces [23] and 
Evaluating a p-th order cohomology operation [37] represent another side of 
the application of cohomology operations to H-spaces. In the first of these 
papers, a tertiary operation is used to establish the first restrictions on the 
action of the Steenrod algebra in the rood 3 cohomology of H-spaces with 3- 
torsion free homology. In the second paper, an extension of these results is 
made to arbitrary odd primes. These papers run parallel to the study of torsion 
free p-local H-spaces, and show that the theory developed in [24] cannot be 
extended for ranks >_-p. The results in [23], [37] are also applicable to the 
question of which algebras over the Steenrod algebra can arise as the 
cohomology algebras of topological spaces. For example, taking p = 3, then 
the exterior algebra 

A(x~, ~"x~, ~,2x~) 
for n odd is realizable if and only if n - -  2 mod 3. 

The seminal examples of Hilton and Roitberg helped in revealing two new 
phenomena in homotopy theory. On the one hand, it is possible to have spaces 
X, Ywhich are not homotopy equivalent, but which become so after localiza- 
tion at any prime. On the other hand, one can have inequivalent spaces X, Y 
such that, after taking the product with a third space Z, X × Z and Y X Z are 
equivalent. To study the first situation, Mislin formulated the notion of genus. 
The second situation is known as non-cancellation. For H-spaces, the two 
phenomena were conjectured to be closely related. 
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Zabrodsky's contributions appear in two papers, On the genus of finite- 
dimensional H-spaces [ 18] and P-equivalence and homotopy type [ 19]. To avoid 
technical language, we shall confine attention to H-spaces, but the results 
in [19] apply to a significantly wider class of spaces (which are also studied 
in [28]). 

The genus of X, denoted G(X), is the set ofhomotopy types (of finite type) Y 
such that for each prime p, the p-localizations of X and Y are homotopy 
equivalent. Zabrodsky is able to realize every space in G(X), for X an H-space, 
by means of the following construction. Let K(Z, tl) be rationally equivalent to 
X, and let 

ho : X--; K(Z, rl) 

be any map inducing an isomorphism 

QH*(ho; Z)/torsion. 

Then every homotopy type Y in G(X) appears as a pull-back 

Y 

K(Z, ti) 

A 
, X 

ho 

, K ( z ,  n) 

where ht and ho are P - Pt equivalences andf0,f are Pt equivalences, where t is 
a product of primes depending only on the genus of X. Here, P is the set of all 
primes and Pt is the set of prime factors of t. One consequence is that G(X) is a 
finite set. Another consequence is that if Y ~ G(X) then the products 

y~(I/2),.~X~(l/2) 

are homotopy equivalent, where ~0 is the Euler function and t as above. Still 
another consequence is that 

Y X S " X X S  

are homotopy equivalent, where S is a product of spheres rationally equivalent 
to X. The converses of these statements are true, and were first proved by 
Mislin and Wilkerson. 

Some interesting calculations can be done. In his book Zabrodsky [2] shows 
that the order of G(SU,) is 
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1-I ~ ( m  - 1)! 
m < n  2 

where SU~ is the 2n-Postnikov approximation to SU. We have 

I a(SU(n))l ~ I G(SUDI 

but it is unknown whether this inequality is an equality. The problem bears on 
the relation of H-spaces with Lie groups. 

Zabrodsky's book, HopfSpaces, appeared in 1976. Besides his own work, he 
gave a careful account of virtually the entire subject of finite H-spaces, at that 
time. While the subject has made some significant advances since the book's 
appearance, a number of its topics are timely, and are not treated elsewhere. 
We review some of these topics. 

The first two chapters (the category of H-spaces, homotopy properties of H- 
spaces) deal with fundamentals. A special feature is the geometric approach to 
the subject. In particular, the invariants known as A-deviations and C- 
deviations of H-maps are developed. 

The third chapter (cohomology of H-spaces) develops the main results 
beginning with the Bockstein spectral sequence and covering much of the work 
reviewed in this paper. A notable feature is the geometric treatment of 
Browder's main results about infinite implications. This treatment does not 
require any analysis of chain complexes. 

The fourth chapter (mod p theory of H-spaces) is alternative to theories 
based on localization. Contained in this chapter is the only proof in print of the 
fundamental theorem that a simply connected finite complex is an H-space if 
and only if each of its p-localizations is. The study of genus and mixing is also 
carried forward in this chapter. 

The final chapter (non-stable BP resolutions) has the flavor of a research 
monograph. It advocates the use of the BP-spectrum for non-stable problems. 
The central construction is called "killing homology p-torsion," with the 
following features. Given a space X and a prime p, there exists a space F(X) 
and a map h : F(X) ~ X such that (a) the integral homology of F(X) is p-torsion 
free and (b) the homotopy groups of the fibre of h are p-torsion free, together 
with other properties restricting the possible homotopy types for F(X) to a 
single mod p homotopy type. If Y has p-torsion free homology, then any 
f :  Y---X factors through F(X) with some control over choices. For example, 
taking B(n, p) - F(K(Z/pZ, n)), then one has p-equivalences 
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p--1 

SU,~  I'[ B(2 i+l ,p ) ,  
P i ~ l  

p - 1  

BSU -~ l] B(2i + 2, p). 
P i - 1  

A development of non-stable BP-Adams resolutions is given and calcula- 
tions are made. With the advances in BP-theory made since the appearance of 
Zabrodsky's book, one can speculate that the time is ripe to combine the 
insights of this chapter with the improved technology currently available. 

The influence of the paper Power spaces has been discussed. Many of the 
applications depended only on rather elementary parts of this theory. 
Zabrodsky recognized that the basic idea was worthy of development for its 
own sake. His comprehensive accounts appear in two publications Endomor- 
phisms in the homotopy category [26] and On the realization of invariant 
subgroups ofzt.(X) [27]. In addition there are four unpublished papers entitled 
Homotopy actions I, II; the fundamental invariants, Polycyclic groups and the 
lifting theorem, A lifting theorem in the category of endomorphisms and a 
possible 6th chapter to this paper Groups of homotopy actions. Announce- 
ments of these results appear as [29, 30]. 

Many of the applications in [26] are to the question of realizing certain 
algebras as cohomology rings of spaces. A notable application is the case of the 
polynomial algebra Z/pZ[x] which is realized whenever n divides p - 1 where 
2n = dim x. This result was first obtained by D. Sullivan using different 
methods. Other results along this line appear in [21] and [28]. 

Perhaps the most far reaching applications of Zabrodsky's theory of self- 
maps to realization questions appear in [27]. As the title indicates, realization 
is based on invariant subgroups ofhomotopy rather than homology. We sketch 
the ideas leading to the main theorem. 

Let R be an integral domain and consider sequences of polynomials P, in 
R [x], such that P. divides P~ + 1. We denote this setup by 

P ,  ~R,[x] .  

Let g,  be a degree 0 endomorphism of a graded R-module M. We say that P ,  
annihilates q~, if for every m, some P, annihilates q~m. The product of 
polynomials is defined gradewise by 

(P," Q,). = P~" Qn. 
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Zabrodsky introduces the notion of tensor product of two polynomials. Essen- 
tially P ® Q is the characteristic polynomial of T ® U where T, U are endo- 
morphisms of free R-modules with characteristic polynomials P, Q respec- 
tively. Then an iterated tensor product of a sequence of polynomials P ,  is 
given gradewise by 

( ® P,)n = IIP,~ ® . . . ® e,,, Y.,r, = n. 

Now we can state a theorem. 

Suppose X is simply connected offinite type, and T is a self-map of X. Suppose 
there are polynomials P,,  Q, in Z,[x] satisfying the following three conditions: 

(a) the leading coefficient of each P., Qm is prime to p, 
(b) the mod p reductions of ® P, and Q, are relatively prime, 
(c) P, .  Q, annihilates the induced map II,(T) ® Zp. 

Then (in part) there exists a space Y realizing the p-local homotopy groups of X 
which are annihilated by products of P,, that is, 

n,(Y) ® z~p) = lim ker(P,)'(1-l,(T) ® Z¢p)). 
r 

Among the applications is the construction of a loop space of type (3, 7, I I, 
15) whose localization at 3 is not homotopy equivalent to any Lie group, and 
thus is not in the genus of any Lie group. The construction of a theory to 
encompass this kind of realization is described in [30]. 

The lifting theorem is used in [26] to study the self-equivalences of a space 
which induce the identity in homotopy or homology. But, as remarked in 
[26], this approach does not yield the best results. In Unipotency and 
nilpotency in homotopy equivalences [22] methods from group theory motivate 
a different approach. Among the results obtained is the theorem that if X is 
any finite dimensional space, the group of based homotopy classes of based 
self-equivalences inducing the identity on FIj(X), j _-< dim X, is a nil- 
potent group. 

A major result in homotopy theory in the early 1980's was the solution, by 
H. Miller, of a problem first posed by D. Sullivan. Zabrodsky was an active 
participant in the development of results based on Miller's theorem. Two 
papers have appeared, On phantom maps and a theorem of H. Miller [34] and 
Maps between classification spaces [35]. At the time of his death, Zabrodsky 
had in preparation at least five more papers. 

The study of phantom maps in [34] is a big step in understanding this 
phenomenon. A map f :  X - - Y  between spaces is called phantom if every 
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compositionf o h is inessential, when h : K --)Xis a map from a finite complex. 
Prior to Zabrodsky's work examples were known, but little was known about 
the space of phantom maps. Under reasonable hypotheses on X, Y, Zabrodsky 
proves that the subspace of pointed phantom maps from X to Y is weakly 
equivalent to the space of all pointed maps from X to Y. This holds, for 
example, if X is of finite type with finite fundamental group and has only 
finitely many non-vanishing homotopy groups, and Y is a finite complex. 
Furthermore, the homotopy groups of the space of phantom maps are equal to 
the homotopy groups of 

map. (XQ, Y) 

where XQ is the rationalization of X in the sense of Bousfield and Kan. 
In the early 1970's, D. Sullivan exhibited examples of maps between 

classifying spaces of compact Lie groups which were not homotopic to maps 
induced by homomorphisms. On the other hand, the examples suggested that 
homology might classify these maps. Miller's work provided access to these 
questions. In [35], Zabrodsky proves that if G is a compact connected Lie 
group with torsion free homology and H is any compact Lie group, then 
f :  BG ~ BH is inessential if and only if its induced map in integral homology is 
trivial. He also provides an example that influenced subsequent development 
in the subject. 

He shows that the path components of essential maps in the mapping space 

map. (BZ/pZ,  BS3), 

for p an odd prime, have infinitely many non-vanishing homotopy groups. 
This completes our survey of Zabrodsky's papers. These contain, in addition 

to numerous calculations, many new and often novel constructions, both 
algebraic and geometric in nature. These seem likely to continue to influence 
the growth of mathematics in those areas where they touch. In addition to his 
papers, Zabrodsky made an immense contribution through conversations and 
correspondence. Thus he added both to knowledge and to the pleasure of 
working in mathematics. 
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